» » Кристалл в кристалле что означает. Кристалл. Пространственная кристаллическая решетка

Кристалл в кристалле что означает. Кристалл. Пространственная кристаллическая решетка

Муниципальное общеобразовательное учреждение лицей № 6

Ворошиловского района

Городской конкурс учебно-

исследовательских работ

«Я и Земля» им. В. И.

Вернадского

Кристаллы знакомые и загадочные.

Секция физики

Выполнили: Берко Мария,

Нефёдова Ирина,

Волгоград

Введение…………………………………………………………………………..3

Основная часть

История возникновения кристаллов и Кристаллография……………………..5

Что же такое кристаллы………………………………………………………….7

Кристаллическое состояние кристаллов…………………………………….....13

Кристаллографические системы…………………………………………..........26

Применение кристаллов…………………………………………………………27

Экспериментальная часть

Выращивание кристалла из медного купороса и алюмокалиевых квасцов…29

Заключение

Актуальность. Объект и предмет. Проблема.

При подборе темы мы отталкивались от практической части: «Выращивание кристаллов». Проанализировав теорию опыта, мы заинтересовались выбранной нами темой и решили более подробно узнать о кристаллах и о его применении в современном мире.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни , многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Сегодня же кристаллы, помимо их свойства соблазна, нашли очень большое применение в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты.

Многие ученые, внесшие большой вклад в развитие химии и минералогии, начинали свои первые опыты с выращивания кристаллов, пытаясь понять, как они образуются.

И мы решили начать свою исследовательскую работу, поставив цель: получить кристаллы различных веществ в домашних условиях.

Цели исследования

1) Вырастить кристаллы правильной формы в домашних условиях

Задачи исследования

1) Познакомиться с историей открытия кристаллов

2) Понять необходимость применения кристаллов в современном мире

3) Исследовать свойства и структуру кристаллов

4) Выяснить где находят широкое применение кристаллы

5) Сделать выводы на основании проведенной работы.

Промышленные проблемы

1) Кристаллы долго растут

2) Некоторые кристаллы являются дорогими для производства (алмаз, рубин)

3) Сложно вырастить кристалл правильной формы

Методы исследования

1) Поисковый метод

2) Экспериментальный метод

1. История возникновения кристаллов.

Кристаллография.

Кристаллом (от греч. krystallos – «прозрачный лед») вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности, и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли «кристальными». Еще и сегодня стекло особой прозрачности называется хрустальным, «магический» шар гадалок – хрустальным шаром.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов, кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

Заметной вехой в истории кристаллографии явилась книга, написанная в 1784 французским аббатом Р. Гаюи. Он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей, как в форме «кирпичиков», так и в способе их укладки.

Со времен Гаюи было принято как гипотеза, что в правильной форме кристалла находит отражение, упорядоченное внутреннее расположение частиц, но это было подтверждено лишь в 1912, когда М. фон Лауэ в Мюнхене установил, что рентгеновские лучи дифрагируют на атомных плоскостях внутри кристалла. Падая на фотографическую пластинку, дифрагированные лучи создают на ней геометрический узор из темных пятен. По положению и интенсивности таких пятен можно рассчитать размеры структурной единицы и определить расположение атомов в ней.

Имея в виду возможность прямого исследования внутренней структуры, многие занимающиеся кристаллографией стали употреблять термин «кристалл» в применении ко всем твердым веществам с упорядоченной внутренней структурой. Нужны лишь благоприятные условия, полагали они, чтобы внутренняя упорядоченность проявилась в виде правильной наружной огранки. Некоторые ученые предпочитают называть твердые вещества с внешне не проявляющейся внутренней упорядоченностью «кристаллическими», а под «кристаллами» понимать, как это было когда-то, твердые вещества с природной огранкой.

1.1 Оптическая кристаллография.

Большое значение в описании и идентификации кристаллов имеют их оптические свойства. Когда свет падает на прозрачный кристалл, он частично отражается, а частично проходит внутрь кристалла. Свет, отражающийся от кристалла, придает ему блеск и цвет, а свет, проходящий внутрь кристалла, создает эффекты, которые определяются его оптическими свойствами

2. Что же такое кристаллы?

Кристаллы - твёрдые тела, имеющие естественную форму правильных многогранников. Правильная форма кристаллов является следствием упорядоченного расположения частиц, из которых они состоят: атомов, молекул, ионов. Эти частицы выстраиваются в строгом порядке “как солдаты в строю” (в отличие от частиц в газах, жидкостях и в аморфных твёрдых телах). От порядка расположения частиц зависит форма кристалла: куб, призма, октаэдр или другой многогранник.

Рис. 1 формы кристаллов

Одиночные крупные кристаллы встречаются редко. Большинство веществ, имеющих кристаллическое строение, образует много маленьких хаотически расположенных сросшихся кристалликов, иногда различимых только в микроскоп, и называются они тогда поликристаллами (металлы, сплавы, многие горные породы).

Физические свойства одиночных кристаллов (монокристаллов) - такие как теплопроводность, электропроводность , упругость, прочность - отличаются по разным направлениям (в отличие от поликристаллических и аморфных тел).

Природные минералы обычно описывают следующими свойствами: химическая формула и класс, цвет, тип кристаллической решётки или сингония, твёрдость, блеск, плотность, цвет черты.

Твёрдость измеряется по десятибалльной шкале Мооса. Самой низкой твёрдостью, принятой за единицу, обладает минерал тальк. Самая большая твёрдость у алмаза, она равна 10. Если царапать друг о друга два минерала, то более твёрдый оставляет царапину на менее твёрдом - так сравнивают минералы по твёрдости. (Твёрдость человеческого ногтя равна 2 - 2,5, поэтому можно быстро определить, больше или меньше “двух” твёрдость данного материала или минерала.)

Блеск минерала бывает металлическим, металловидным, стеклянным, алмазным, матовым, восковым, перламутровым, шелковистым, смолистым или жирным.

Цвет черты определяют, проводя минералом по фарфоровой шероховатой пластинке (её называют бисквитом). Минералы описывают и другими свойствами: прозрачность, излом, спайность, магнетизм, показатель преломления.

· Электроэнергетика, электротехника" href="/text/category/yelektroyenergetika__yelektrotehnika/" rel="bookmark">электротехнике .

· Пирит - серный колчедан

· Формула: FeS2

· Класс: сульфиды

· Цвет: светло-золотистый

· Сингония: кубическая

· Твёрдость: 6-6,5

· Плотность (г/см3): 4,95-5,10

· Блеск: металлический рис. 3 Пирит

· Цвет черты: зеленовато-чёрный, коричнево-чёрный

Название минерала происходит от греческого слова “огнеподобный” из-за способности высекать искры при ударе. Ещё его называют “золотом для дураков” из-за похожести на золото. В древней Индии кристаллы пирита носили при себе в качестве амулета, чтобы оградить себя от нападения от крокодила.

· Арагонит - карбонат кальция, твёрдая разновидность кальцита

· Формула: CaCO3

· Класс: карбонаты

· Цвет: белый, серый, бледно - жёлтый, зелёный, синий, фиолетовый, чёрный

· https://pandia.ru/text/78/007/images/image005_49.jpg" alt="Исландский шпат" align="left" width="216" height="168 ">

В 1669 году профессор Копенгагенского Бартолин обнаружил, что луч света, падающий перпендикулярно на поверхность кристалла исландского шпата, разделяется на два луча: один луч продолжает путь без изменения направления и называется обыкновенным, а другой отклоняется, нарушая обычный закон преломления света, и называется необыкновенным. Если положить кристалл исландского шпата на бумагу с рисунком или текстом, то мы увидим раздвоенное изображение. (*Можно сразу расположить на бумажке с текстом). Исландский шпат широко используется в оптическом приборостроении для изготовления поляризационных призм. Крупнейшие в мире месторождения исландского шпата находятся в России в районе Нижней Тунгуски.

Используется как руда для получения ванадия, который необходим для изготовления бронебойной стали.

Кроме представленных выше примеров кристаллов существует большое количество других минералов с видимым кристаллическим строением: кварц, галит, флюорит, турмалин, доломит, цианит, целестит и т. д.

Наряду с кристаллами можно разместить для сравнения минералы аморфного строения, например, янтарь, обсидиан. Если возникнет редкая возможность заиметь тектит, то ей тоже надо воспользоваться. Тектиты остаются самыми загадочными из всех когда-либо найденных на Земле камней, общепринятой гипотезы их происхождения не существует. Одна из гипотез говорит, что они обязаны рождением небесным телам, хотя и состоят из вещества нашей планеты. Миллионы лет назад Земля бомбардировалась крупными метеоритами, астероидами . При столкновении крупного метеорита с поверхностью Земли происходил взрыв, земные породы оплавлялись, разлетаясь в стороны, и образовывались стеклянные обтекаемого вида тела жёлтого, зелёного, чёрного цвета. Но это лишь одна из гипотез, хотя и самая правдоподобная. Есть предположения о кометном происхождении тектитов, о возникновении тектитов при посадках инопланетных кораблей и при столкновении Земли со сгустками сверхплотного нейтронного вещества.

2.1. Искусственные кристаллы.

С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе – из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350–450°C и давлении 140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия , расплавляемого при температуре 2050° C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.

3. Кристаллическое состояние.

Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности. В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. Но атомы и молекулы жидкости все-таки могут скользить относительно друг друга. При охлаждении некоторых жидкостей, например, воды, достигается температура, при которой молекулы застывают в относительной неподвижности кристаллического состояния. Эта температура, разная для всех жидкостей, называется температурой замерзания. (Вода замерзает при 0° С; при этом молекулы воды упорядоченно соединяются друг с другом, образуя правильную геометрическую фигуру.) У каждой частицы вещества (атома или молекулы), находящегося в кристаллическом состоянии, окружение точно такое же, как и у любой другой частицы того же типа во всем кристалле. Другими словами, ее окружают вполне определенные частицы, находящиеся на вполне определенных расстояниях от нее. Именно это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.

3.1. Образование кристаллов.

Вообще говоря, кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды, так как вода, в сущности, не что иное, как расплавленный лед. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры или вытесняемая в виде лавы на ее поверхность, содержит многие элементы в разупорядоченном состоянии. При охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. В таких условиях возникает много зародышей кристаллов. Увеличиваясь в размере, они мешают, друг другу расти, а поэтому гладкие наружные грани у них образуются редко.

В природе кристаллы образуются также из растворов, примером чему могут служить сотни миллионов тонн соли, выпавшей из морской воды. Такой процесс можно продемонстрировать в лаборатории с водным раствором хлорида натрия. Если дать воде возможность медленно испаряться, то, в конце концов, раствор станет насыщенным и дальнейшее испарение приведет к выделению соли. Положительно заряженные ионы натрия притягивают отрицательно заряженные ионы хлора, в результате чего образуется зародыш кристалла хлорида натрия, который выделяется из раствора. При дальнейшем испарении другие ионы пристраиваются к образовавшемуся ранее зародышу, и постепенно растет кристалл с характерной внутренней упорядоченностью и гладкими наружными гранями.

Кристаллы образуются также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

3.2. Формы кристаллов.

Хотя с первого взгляда все грани, определяющие форму кристалла, могут показаться одинаковыми, при тщательном исследовании обнаруживаются небольшие различия. Это могут быть различия в блеске, нерегулярностях роста, дефектах травления или полосчатости. Тем не менее, некоторые грани оказываются совершенно одинаковыми. Такие грани состоят из одинаковых и одинаково расположенных атомов и соответствуют определенной форме кристаллов. Распределение граней разных форм выявляет симметрию, так как все грани одной формы имеют одинаковое отношение к элементу симметрии. Некоторые кристаллы имеют грани только одной формы, а другие – грани многих форм. На рис. 1 показаны три различные формы кубической системы.

https://pandia.ru/text/78/007/images/image008_37.jpg" width="265 height=115" height="115">

Рис. 7. Формы кристаллов кубической системы. а – куб; б – октаэдр; в – додекаэдр; г – комбинация куба, октаэдра и додекаэдра.

3.3 Структура кристалла .

Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла – это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О. Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14.

Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико.

Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична «кирпичику» Гаюи, т. е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10–9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой.

Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т. е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.

3.4. Морфология кристаллов.

Кристаллы имеют некую внутреннюю симметрию, которая не обнаруживается в бесформенной крупинке. Симметрия кристаллов получает наружное выражение только тогда, когда они имеют возможность свободно расти без каких-либо помех. Но даже хорошо организованные кристаллы редко имеют совершенную форму, и нет двух кристаллов, которые были бы совершенно одинаковы.

Форма кристалла зависит от многих факторов, один из которых – форма элементарной ячейки. Если такой «кирпичик» повторить одинаковое число раз параллельно каждой из его сторон, то получится кристалл, форма и относительные размеры которого точно такие же, как у элементарной ячейки. Близкая к этому картина характерна для многих кристаллических веществ. Но на форму оказывают влияние и такие факторы, как температура, давление, чистота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм. Различие форм связано с тем, как именно укладываются одинаковые «кирпичики».

Аналогия между элементарными ячейками и кирпичами очень полезна. Укладывая кирпичи так, чтобы их соответствующие стороны были параллельны, можно построить стену, длина, высота и толщина которой будут зависеть только от числа кирпичей, уложенных в данном направлении. Если же в определенном порядке удалять кирпичи, то можно получить миниатюрные лестничные марши с наклоном, зависящим от соотношения чисел кирпичей в подступенке и наступи ступеньки лестницы. Если на такую лестницу наложить линейку, то она образует угол, определяемый размерами кирпича и способом укладки. Углы наклона x и y симметричны независимо от относительных длин s и f.

Точно так же и кристалл может принимать ту или иную форму, если в строго определенном порядке пропускаются некоторые ряды или группы элементарных ячеек. Косые грани кристалла подобны лестницам, сложенным из кирпичей, но «кирпичики» здесь столь малы, что грани кристалла, выглядят, как гладкие поверхности. Углы между соответствующими гранями кристалла постоянны, независимо от его размера. Это установил в 1669 датчанин Н. Стено на примере кристаллов кварца. Тем самым он показал, что форма является характеристикой кристаллического вещества. Ныне известно, что форма кристалла зависит от размеров и формы элементарной ячейки, и положение Стено приняло обобщенную форму закона, согласно которому углы между соответствующими гранями кристаллов одного и того же вещества постоянны.

Размеры и форма граней изменяются от кристалла к кристаллу. Тем не менее, имеется некая внешняя симметрия, присущая всем хорошо ограненным кристаллам. Она обнаруживается в повторении углов и похожести граней, одинаковых в смысле внешнего вида, дефектов травления и особенностей роста. Если кристалл имеет почти совершенную форму, то его симметричные грани тоже подобны по размерам и форме.

До появления рентгеновской кристаллографии самым важным делом занимавшихся кристаллографией было измерение углов между гранями кристаллов. Вычерчивая на основе таких угловых измерений грани кристалла в стереографической или гномонической проекции, можно выявить симметричное расположение граней независимо от размера и формы. По такой проекции можно вычислить отношения осей, а затем выполнить чертеж кристалла.

3.5. Показатель преломления.

При переходе наклонного луча света из воздуха в кристалл его скорость распространения уменьшается; падающий луч отклоняется, или преломляется. Чем больше плотность кристалла и чем больше угол падения луча (i), тем больше угол преломления (r). Отношение sin i к sin r есть величина постоянная. Это обычно записывают в виде равенства sin i/sin r = n; константа n называется показателем преломления. Это самая важная из оптических характеристик кристалла, и ее можно очень точно измерить.

С позиций оптики все прозрачные вещества можно разделить на две группы: изотропные и анизотропные. К изотропным относятся кристаллы кубической системы и некристаллические вещества, например, стекло. В изотропных веществах свет распространяется во всех направлениях с одинаковой скоростью, и поэтому такие вещества характеризуются одним показателем преломления. Группу анизотропных веществ составляют кристаллы всех других кристаллографических систем. В веществах этой группы скорость света, а следовательно, и показатель преломления непрерывно изменяются при переходе от одного кристаллографического направления к другому. Когда свет входит в анизотропный кристалл, он разделяется на два луча, колеблющихся под прямым углом друг к другу и распространяющихся с разными скоростями. Такое явление называется двойным лучепреломлением; всякий анизотропный кристалл характеризуется двумя показателями преломления. Для гексагональных и тетрагональных кристаллов указывают максимальный и минимальный, т. е. «главные» показатели преломления. Один из этих главных показателей преломления соответствует лучу света, колеблющемуся параллельно оси c, а с другой – лучу света, колеблющемуся под прямым углом к этой оси. В орторомбических, моноклинных и триклинных кристаллах имеются три главных показателя преломления: максимальный, минимальный и промежуточный, определяемые лучами света, колеблющимися в трех взаимно перпендикулярных направлениях.

Поскольку показатели преломления зависят от химического состава и строения материала, они являются характеристическими величинами для каждого кристаллического твердого вещества, и их измерение служит эффективным методом его идентификации. Пользуясь простым рефрактометром, ювелир или специалист по драгоценным камням может измерить показатель преломления драгоценного камня, не вынимая его из оправы. С помощью поляризационного микроскопа минералог без особого труда определяет тип минерала, измеряя его показатели преломления и другие оптические характеристики на мелких крупинках. Плеохроизм. В анизотропных кристаллах свет, колеблющийся в разных кристаллографических направлениях, может поглощаться по-разному. Одно из возможных следствий такого явления, называемого плеохроизмом, – изменение цвета кристалла при изменении направления колебаний. В других кристаллах свет, колеблющийся в одном кристаллографическом направлении, может распространяться почти без потерь интенсивности, а под прямым углом к нему почти полностью поглощаться. На различиях в поглощении света тонкими ориентированными кристаллами основано действие таких поляризационных светофильтров, как поляроид.

3.6. Элементы симметрии.

Задолго до того, как 32 типа симметричных расположений точечных групп были определены рентгеновскими методами, они были выявлены путем исследования морфологии , т. е. формы и структуры кристаллов. На основании вида и расположения граней, а также углов между ними кристаллы приписывались одному из 32 кристаллографических классов. Поэтому пространственные группы и кристаллографические классы – это как бы синонимы, и существуют три основных элемента симметрии: плоскость, ось и центр.

3.7. Плоскость симметрии.

Многие хорошо известные нам предметы обладают симметрией относительно плоскости. Например, стул или стол можно представить себе разделенными на две одинаковые части. Точно так же плоскость симметрии делит кристалл на две части, каждая из которых является зеркальным отображением другой. (Плоскость симметрии иногда называют плоскостью зеркального отображения.)

3.8. Ось симметрии.

Ось симметрии – это воображаемая прямая, поворотом вокруг которой на часть полного оборота можно привести объект к совпадению с самим собой. В кристаллах возможны только пять видов осевой симметрии: 1-го порядка (эквивалентная отсутствию вращения), 2-го порядка (повторение через 180), 3-го порядка (повторение через 120), 4-го порядка (повторение через 90) и 6-го порядка (повторение через 60).

3.9. Центр симметрии.

Кристалл имеет центр симметрии, если любая прямая, мысленно проведенная через него, на противоположных сторонах поверхности кристалла проходит через одинаковые точки. Таким образом, на противоположных сторонах кристалла находятся одинаковые грани, ребра и углы.

Имеются 32 возможные комбинации плоскостей, осей и центров симметрии в кристаллах; каждой такой комбинацией определяется кристаллографичес-кий класс. Один класс не имеет симметрии; говорят, что он имеет одну ось вращения 1-го порядка.

3.10. Сигнолии.

Кристаллографические классы, или виды симметрии, объединяются в более крупные группировки, называемые системами или сингониями. Таких сингоний семь:

Таблица 1

В каждую сингонию входят кристаллы, у которых отмечается одинаковое расположение кристаллографических осей и одинаковые элементы симметрии.
Сингониеи называется гриппа видов симметрии, обладающих одним или несколькими одинаковыми элементами симметрии и имеющих одинаковое расположение кристаллографических осей.

Кубическая сингония. В этой сингонии кристаллизуются наиболее симметричные кристаллы. В кубической сингонии присутствует более одной оси симметрии выше второго порядка, т. е. L3 или L4 . Кристаллы кубической сингонии обязательно должны иметь четыре оси третьего порядка (4L3) и, кроме того, либо три взаимно перпендикулярные оси четвертого порядка (3L4), либо три оси второго порядка (3L2).
Максимальное количество элементов симметрии в кубической сингонии может быть выражено формулой 3L4 4L36L29PC. Кристаллы кубической сингонии встречаются в виде куба октаэдра, тетраэдра, ромбододекаэдра, пентагон-додекаэдра и др.

Рис. 8 Кристаллы кубической сигнолии:

1- куб (пирит, торианит, галенит, флюорит, перовскит); 2- кубооктаэдр (галенит); 3 – октаэдр (золото, хромит, магнетит, шпинель); 4-ромбододекаэдр (золото, гранат); 5- тетрагон - триоктаэдр (гранат, лейцит); 6 – комбинация двух тетраэдров (сфалерит); 7- пентагон-додекаэдр (пирит, гранат); 8- гексаэдр (алмаз); 9 – двойник прорастания куба (пирит, тюрканит. флюорит)

Сингонии средней категории. Эта группа объединяет кристаллы, обладающие только одной осью симметрии порядка выше второго. К средней категории относятся гексагональная, тетрагональная и тригональная сингонии. Гексагональная сингония характеризуется наличием одной оси симметрии шестого порядка (L6). Максимальное количество элементов симметрии может быть следующим" L56L27PC. Кристаллы гексагональной сингонии образуют приз мы, пирамиды, дипирамиды и др.

https://pandia.ru/text/78/007/images/image011_32.jpg" width="495" height="236 src=">

Рис. 10 Кристаллы тетрагальной сигнолии:

1- тетрагональная дипирамида (анатаз, циркон, ксенотим); 2- анатаз; 3- комбинация тетрагональной призмы с тетрагональной дипирамидой (циркон, брукит); 4- комбинация дипирамиды и двух призм (ксенотим, рутил, циркон);

5- комбинация двух призм с дипирамидой (везувиан, циркон); 6- комбинация двух тетрагональных призм и дипирамиды с пинакоидом (везувиан); 7- комбинация двух призм с двумя дипирамидами (касситерит); 8- двойник касситерита; 9,10- вульфенит, 11- шеелит.

4. Кристаллографические системы.

https://pandia.ru/text/78/007/images/image013_28.jpg" width="524" height="277 src=">

Рис. 11-2 7 разных способов упорядоченного расположения в пространстве одинаковых точек.

На рис. 11 представлены семь базисных ячеек решеток разной формы. Ромбоэдрическая и гексагональная решетки определяются одними и теми же осями. Таким образом, при наличии 32 симметрий точечных групп имеются только шесть основных форм элементарных ячеек. Соответственно форме основной «строительной» единицы 32 кристаллографических класса разделяются на шесть кристаллографических систем. Каждая кристаллографическая система имеет собственную систему координат, которыми определяются элементарная ячейка, а, следовательно, и грани кристалла. На рис. 11 это стороны a, b и c элементарной ячейки. Принято через c обозначать вертикальную сторону, через b – горизонтальную в плоскости чертежа и через a – горизонтальную сторону, перпендикулярную плоскости чертежа. Прямые, на которых лежат эти стороны, служат линиями отсчета и называются кристаллографическими осями. Угол между b и c обозначается a, между a и c – b, а между a и b – g. Названия кристаллографических систем, относительные длины и угловые соотношения между соответствующими кристаллографическими осями таковы:

Триклинная: a № b № c, a № b № g.

Моноклинная: a № b № c, a = g = 90°, b > 90°.

Орторомбическая: a № b № c, a = b = g = 90°.

Тетрагональная: a = b № c, a = b = g = 90°. Поскольку a и b в этой системе равны и равноценны, их обычно обозначают через a1, a2. Сторона c может быть больше либо меньше a.

Гексагональная: a = b № c, a = b = 90°, g = 120°. Элементарная ячейка гексагональных кристаллов обычно рассматривается как тройная и определяется тремя горизонтальными осями a1, a2, a3, составляющими угол 120° друг с другом и 90° с условно вертикальной осью c.

Кубическая (изометрическая): a = b = c, a = b = g = 90°.

На рис. 1 показаны разнообразные формы, которые могут иметь кристаллы, относящиеся к разным кристаллографическим системам.

5. Применение кристаллов.

Большое применительное значение кристаллы нашли в оптике. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Практическая часть.

Выращивание кристалла из медного купороса и алюмокалиевых квасцов.

Чтобы вырастить кристалл медного купороса, сначала нужно сделать перенасыщенный раствор: размешать в горячей воде такое количество медного купороса, которое потребуется, чтобы больше «не помещалось» этого вещества. Потом через тряпочку, сложенную вдвое, необходимо профильтровать раствор в другую банку. На следующий день на дне банки с раствором образуются маленькие кристаллы вещества – затравки. Нужно выбрать затравку правильной формы и привязать её ниточкой к карандашу. Раствор нужно разогреть и снова добавлять в него, размешивая, медный купорос до тех пор, пока раствор опять не станет насыщенным. Раствор снова нужно профильтровать в чистую банку и повесить туда затравку. До размера спичечного коробка кристалл будет расти приблизительно месяц. Время от времени банку и нитку нужно очищать от других кристалликов и доливать насыщенный раствор. Когда кристалл достигнет больших размеров, его нужно вынуть из банки, отрезать нитку и протереть маслом.

Выращивание больших монокристаллов соединений, растворимых в воде

disc"> Если образовалось множество мелких сросшихся бесформенных кристалликов, как после резкого охлаждения, то количество соли уменьшают и повторяют описанную стадию.

    Если кристаллики не образовались, раствору следует постоять ещё сутки; иначе, следует увеличить количество растворяемого вещества, повторив этап заново.

Эта стадия эксперимента должна обучить экспериментаторов правильно, выращивать затравку, которая далее будет исходным кирпичиком для получения огромной конструкции. Отберем подходящие по структуре кристаллики (с длинной ребра от 0,3 см и более) и будем хранить их отдельно в растворе соли в банке с притёртой пробкой вдали от источников высоких температур и света.

Надо помните: чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё (как перламутру к пещинке, попавшей в мантию моллюска).

III. Выращивание монокристалла:

Снова готовим насыщенный раствор на основе исходного маточного. Для этого готовый раствор ставим на водяную баню и добавляем 0,5 чайной ложки вещества. Чем меньше мы добавим на этом этапе, тем лучше (можно также просто нагреть насыщенный раствор, без добавления вещества). Греем и перемешиваем. Как только вещество растворилось, колбу вынимаем, и раствор переливаем в заранее приготовленный нагретый стакан. Стакан с раствором ставим на выбранное место, и даем 20-30 сек постоять, чтобы жидкость немного успокоилась. Наш раствор неперенасыщенный, поэтому “лишние градусы” могут вызвать растворение затравки, что нам не нужно. Если раствор тёплый, ему дают остыть до 300C или чуть меньше (проверить при отсутствии термометра – легко; температура нашего тела 36,60C, поэтому всё, что кажется теплее – выше её, наоборот - ниже). Следить за остыванием раствора следует очень внимательно, чтобы не допустить её понижения до комнатной (обычно на остывание раствора выделяю около двух часов).

Далее следует сказать, что можно вырастить кристалл и без нити. Всё, что для этого требуется – стакан с плоским дном, так как для этой цели затравку аккуратно укладывают на середину дна (можно помочь ей лечь нагретой стеклянной палочкой), и она повторит его рельеф. Здесь рост кристалла будет ограничен стенками стакана, и преимущественно, он будет расти в стороны – это хорошо для медного купороса и для плоских кристаллов в принципе (жёлтая кровяная соль, гидрофталат калия).

В случае с квасцами лучше использовать нить, которой обматываем затравку, а остальную часть нити закрепляем на каркасе из двух пересечённых палочек. Кристалл при этом должен “висеть” в растворе в центре. Но здесь требуется следить за тем, чтобы не обрастала нить. Если такое произошло, то нить с кристаллом вынимаем, счищаем лишнее и заново готовим раствор* (греют, подготавливают к температуре кристалл и т. п.) Надо помните: чтобы не было наростов на нити, нить должна быть тонкой без волосков, и должна быть опущена с затравкой в раствор на 5о теплее, чем для простой затравки. Такая нить успевает пропитаться раствором и “сливается” с системой в единое целое.

Теперь следует следить за ростом кристалла каждый день, ни в коем случае не сотрясая раствор, иначе эта встряска породит в системе мгновенную кристаллизацию. Так многие авторы советую доливать раствор в систему по мере его испарения. Это очень сложная операция, поскольку возникшая сильная диффузия также может вызвать сбои в росте кристалла. Вначале мы увидим, как система будет “обживать” затравку, как они будут подстраиваться друг под друга. В итоге должно получиться следующее:

Рис.13 кристаллы меди Рис. 14 кристаллы квасцов

Полученные кристаллы медного купороса (рис.11) и алюмокалиевых квасцов (рис. 12), за одну неделю выращивания.

Наши результаты:

https://pandia.ru/text/78/007/images/image018_21.jpg" width="257" height="179 src=">

Рис. 15 Рис. 16

Выращенные нами кристаллы медного купороса (рис. 15) и алюмокалиевых квасцов (рис. 16), за одну неделю выращивания.

Вывод:

Мы научились выращивать кристаллы и узнали, что этим способом можно выращивать кристаллы любых других простых веществ, а также, что необходимо для выращивания и как происходит рост кристаллов.

Мы хотим дать советы тем, кто заинтересовался этой работой и хочет вырастить кристалл самостоятельно в домашних условиях.

Наши советы:

Ø Для выращивания кристаллов используют только свежеприготовленные растворы.

Ø Чтобы кристаллы росли как можно правильно, а у бесцветного вещества они были прозрачными, кристаллизация должна идти медленно, иначе кристалл мутнеет.

Ø Чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё.

Заключение.

Итак, в данной работе была рассказана лишь малая часть того, что известно о кристаллах в настоящее время, однако и эта информация показала, насколько неординарны и загадочны кристаллы по своей сущности.
В облаках, в глубинах Земли, на вершинах гор, в песчаных пустынях, в морях и океанах, в научных лабораториях, в клеточках растений, в живых и мертвых организмах везде встретим мы кристаллы. Но может кристаллизация вещества совершается только на нашей планете? Нет, мы знаем теперь, что и на других планетах и далеких звездах все время непрерывно возникают, растут и разрушаются кристаллы. Метеориты, космические посланцы, тоже состоят из кристаллов, причем иногда в их состав входят кристаллические вещества, на Земле не встречающиеся. Кристаллы везде.
Люди привыкли использовать кристаллы, делать из них украшения, любоваться ими. Теперь, когда изучены методы искусственного выращивания кристаллов, область их применение расширилась, и, возможно, будущее новейших технологий принадлежит кристаллам и кристаллическим агрегатам.

Список литературы.

1. ; «Занимательные опыты по химии», 1995 г.

2. Алферова «Большой справочник по химии для школьников»,2002

3. «Энциклопедия драгоценных камней и кристаллов», 2008

4. «Кристаллы. Их роль в природе и науке.», 1970

5. «Сила кристаллов»,2003

6. «Физика твёрдого тела», 2008

7. Довбни «Мир кристаллов», 2006

8. «Камень, рождающий металл», 1984г.;

9. «Минерал рассказывает о себе», 1985 г.;

10. «Физика. Справочные материалы», 1991г.

11. «Физический практикум.» , 2002.

12. Петров « Выращивание кристаллов из растворов», 2000

13. «Школьникам о современной физике», М.; 1990г.

14. «Замечательные минералы», 1983г

15. Сухарёва «Удивительный мир кристаллов», 2007

16. Холл Джуди «Путеводитель по миру кристаллов. Иллюстрированный справочник», 2007

17. , «Основы кристаллографии», 2006

18. «Кристаллография. Лабораторный практикум», 2005

19. ; "Кристаллы", 1985 г.;

КРИСТАЛЛЫ (от греч. krystallos - кристалл; первоначально - лед), твердые тела , обладающие трехмерной периодич. атомной (или молекулярной) структурой и, при определенных условиях образования, имеющие естеств. форму правильных симметричных многогранников (рис. 1). Каждому хим. в-ву, находящемуся при данных термодинамич. условиях (т-ре, давлении) в кристаллическом состоянии , соответствует определенная кристаллическая структура

Рис. 1: а - некоторые синтетические монокристаллы и изделия из них (кварц , гранат, КН 2 РО 4 , алюмокалиевые квасцы и др., стержни рубина для лазеров , сапфировые пластинки); б - кристалл аспартат-трансаминазы (длина ~1 мм); в - микромонокристалл Ge (размер ~5 мкм).

и определяемая ею внеш. огранка. Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки (или потерявший ее в результате обработки), сохраняет кристаллич. структуру и все определяемые ею св-ва. На макроуровне, т.е. при измерении участков кристалла, существенно превышающих расстояния между атомами и размеры элементарных ячеек, кристалл можно рассматривать как сплошную однородную твердую среду, физ., физ.-хим. и др. св-ва к-рой обладают анизотропией и симметрией . Большинство твердых материалов является поликристаллическими; они состоят из множества отдельных беспорядочно ориентированных мелких кристаллич. зерен (кристаллитов), напр. мн. горные породы , техн. металлы и сплавы . Крупные отдельные однородные кристаллы с непрерывной кристаллич. решеткой называют монокристаллами . Таковы кристаллы минералов , напр. громадные (до сотен кг) кристаллы кварца (горного хрусталя), флюорита , кальцита , полевого шпата или относительно мелкие кристаллы берилла, алмаза и др. Кристаллы образуются и растут чаще всего из жидкой фазы - р-ра или расплава ; возможно получение кристаллов из газовой фазы или при фазовом превращ. в твердой фазе (см. Кристаллизация , Монокристаллов выращивание). Существуют пром. и лаб. методы выращивания синтетич. кристаллов - аналогов прир. кристаллов (кварц , рубин, алмаз и др.) и разл. техн. кристаллов, напр. Si, Ge, лейкосапфира, гранатов. Кристаллы образуются и из таких прир. в-в, как белки , нуклеиновые к-ты, а также из вирусов . При определенных условиях можно получить кристаллы синтетич. полимеров . Осн. методы исследования кристаллов, их атомной структуры и ее дефектов - рентгенография , нейтронография , электронография , электронная микроскопия ; используют также оптич. и спектроскопич. методы, в т.ч. ЭПР , ЯМР , электронную и мёссбауэровскую спектроскопии и др.

Геометрия кристаллов. Выросшие в равновесных условиях кристаллы имеют форму правильных многогранников той или иной симметрии . Два осн. закона геом. кристаллографии - Стенона (Стено) и Гаюи. Первый (закон постоянства углов) гласит: углы между соответствующими гранями кристаллов одного и того же в-ва постоянны, грани при росте кристаллов передвигаются параллельно самим себе. Закон рациональных параметров Гаюи утверждает, что если принять за оси координат три непараллельных ребра кристалла, то расположение любой грани кристалла можно задать целыми числами. Одна из граней кристалла р" 1 р" 2 p" 3 условно выбирается как единичная (рис. 2); отрезки Ор 1 (а), Ор 2 (b) и Ор 3 (с), отсекаемые этой гранью на координатных ребрах, принимаются за единицы измерения вдоль осей координат. В общем случае оси координат не ортогональны и а № b № с. Отрезки, отсекаемые на осях координат любой гранью кристалла, относятся как целые числа p 1 , p 3 , p 3 , т.е. могут быть выражены как кратные нек-рых осевых единиц а, b, с. Эти геом. законы привели к выводу о существовании кристаллич. решетки, что подтвердилось после открытия дифракции рентгеновских лучей. Гониометрия - измерение межгранных углов кристаллов - являлась до нач. 20 в. осн. методом описания кристаллов, их идентификации , однако затем она практически потеряла свое значение благодаря появлению рентгеноструктурного анализа.

Рис. 2. Графическое изображение расположения граней в кристалле.

Атомная структура кристаллов описывается как совокупность повторяющихся в пространстве одинаковых элементарных ячеек, имеющих форму параллелепипедов с ребрами а, b, с (периоды кристаллич. решетки). Расположение атомных плоскостей кристаллич. решетки (к-рым могут соответствовать и грани кристалла) характеризуется кристаллографич. индексами (или индексами Миллера). Они связаны с отсекаемыми соответствующей плоскостью на трех осях кристаллографич. системы координат отрезками, длины к-рых p 1 , р 2 и p 3 выражены в постоянных решетки а, b, с. Если величины, обратные p 1 , р 2 и р 3 , привести к общему знаменателю, а затем отбросить его, то полученные три целых числа h=р 2 p 3 , k=p 1 p 3 , l=p 1 p 2 и естъ индексы Миллера. Они записываются в круглых скобках (hkl). Как правило, кристалл имеет грани с малыми значениями индексов, напр. (100), (110), (311). Равенство нулю одного или двух индексов означает, что плоскости параллельны одной из кристаллографич. осей (осей координат). Если грань пересекает отрицат. направление оси, то над индексом ставится знак минус, напр. (121). Периоды ячеек а, b, с и углы между ребрами a , b , у измеряют рентгенографически.
Симметрия кристаллов. При нек-рых геом. преобразованиях g i кристалл способен совмещаться с самим собой, оставаясь инвариантным (неизменным). На рис. 3, а изображен кристалл кварца . Внеш. его форма такова, что поворотом на 120° вокруг оси 3 он м. б. совмещен сам с собой (совместимое равенство). Кристалл Na 2 SiO 3 (рис. 3,6) преобразуется сам в себя отражением в плоскости симметрии т (зеркальное равенство). Преобразования (операции) симметрии любого кристалла g i - повороты, отражения, параллельные переносы или комбинации этих преобразований -составляют мат. группы G(g 0 , g 1 ,..., g n-1). Число п операций, образующих группу G, наз. порядком группы. Группы преобразований кристаллов обозначают G 3 m , где m - число измерений, в к-ром объект периодичен, верх. индекс 3 означает три измерения пространства, в. к-рых эти группы определены. Кристаллич. многогранник макроскопически непериодичен, группы симметрии таких многогранников (точечные группы) обозначают G 3 0 . Микроструктура кристаллов на атомном уровне - трехмерно-периодическая, т.е.

Рис. 3. Примеры кристаллов разной симметрии : а кристалл кварца (3 - ось симметрии 3-го порядка; 2 x , 2 y , 2 w - оси 2-го порядка); б - кристалл водного Na 2 SiO, (m - плоскость симметрии).

описывается как кристаллич. решетка, соответствующие группы симметрии G 3 3 . После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в др. месте. Это означает, что симметричный объект состоит из равных - совместимо и (или) зеркально - частей. Симметрия кристаллов проявляется не только в их структуре и св-вах в реальном трехмерном пространстве, но также и при описании энергетич. спектра электронов кристалла, при анализе дифракции рентгеновских лучей и электронов в кристаллах в обратном пространстве и т.п. Пример кристалла, к-рому присущи неск. операций симметрии , -кристалл кварца ; он совмещается сам с собой при поворотах вокруг оси 3 на 120° (операция g 1), на 240° (операция g 2), а также при поворотах на 180° вокруг осей 2 x , 2 y , 2 w (операции g 3 , g 4 , g 5). Каждой операции симметрии м. б. сопоставлен элемент симметрии - прямая, плоскость или точка, относительно к-рой производится данная операция. Напр., оси 3, 2 x , 2 y , 2 w - ocи симметрии , плоскость m - плоскость зеркальной симметрии и т.п. Последоват. проведение двух операций симметрии также является операцией симметрии . Всегда существует операция идентичности (отождествление) g 0 =1, ничего не изменяющая в кристалле, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Точечные группы симметрии . Операции точечной симметрии кристалла- повороты вокруг оси симметрии порядка N на угол, равный 360 o /N (рис. 4, а), отражение в плоскости симметрии т (зеркальное отражение; рис. 4,6), инверсия I (симметрия относительно точки; рис. 4, в) инверсионные повороты N (комбинация поворота на угол 360°/N с одновременной инверсией ; рис. 4, г). Геометрически возможные сочетания этих операций определяют ту или иную точечную группу симметрии . При преобразованиях точечной симметрии по крайней мере одна точка объекта остается неподвижной. В ней пересекаются

Рис. 4. Простейшие операции симметрии : а - поворот; б - отражение; в - инверсия ; г - инверсионный поворот; д - винтовой поворот; е - скользящее отражение.

каются все элементы симметрии . Число точечных групп симметрии G 0 3 бесконечно. Однако в кристаллах, ввиду наличия кристаллич. решетки, возможны только операции и соотв. оси симметрии до 6-го порядка, кроме 5-го (в кристаллич.


Примечание. Точечные группы симметрия чаще моего в лит. обозначают их международными символами. решетке такая ось невозможна), к-рые обозначаются символами 1, 2, 3, 4. 6, а также инверсионные оси (она же центр симметрии), 2 (она же плоскость симметрии т), 3, 5, 6. Поэтому число точечных групп симметрии кристаллов, иначе наз. кристаллографи ч. классами кристаллов, ограниченно, их всего 32 (см. табл.). В международные обозначения точечных групп входят символы порождающих их операций симметрии . Эти группы объединяются по симметрии формы элементарной ячейки в 7 сингоний - триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную, кубическую.

Рис. 5. Простые формы (а) кристаллов и нек-рые их комбинации (б).

Совокупность кристаллографически одинаковых граней (т. е. совмещающихся друг с другом при операциях симметрии данной группы) образует т. наз. простую форму кристалла. Всего существует 47 простых форм кристаллов, но в каждом классе могут реализоваться лишь нек-рые из них. Кристалл может быть огранен гранями одной простой формы (рис. 5, а), но чаще комбинацией этих форм (рис. 5,5). Огранка каждого кристалла подчиняется описывающей его точечной группе симметрии при равномерном развитии кристаллич. многогранника, когда он имеет идеальную форму (рис. 6). Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей (группы 1-го рода; примеры таких операций даны на рис 4, a, д). Группы, содержащие отражения или инверсионные повороты, описывают кристаллы, в к-рых есть зеркально равные части (группы 2-го рода; примеры на рис. 4,6, г, е). Кристаллы, описываемые группами 1-го рода, напр. кварца , винной к-ты, могут кристаллизоваться в двух энантиоморфиых формах (правой и левой), каждая из к-рых не содержит элементов симметрии 2-го рода (см. Энантиоморфизм). Мн. св-ва кристаллов, принадлежащих к определенным точечным группам симметрии , описываются т. наз. предельными точечными группами, содержащими оси симметрии бесконечного порядка : . Наличие оси : означает, что


Рис. 6. Примеры огранки кристаллов, принадлежащих к разным точечным группам симметрии (классам): a - класс 2 (одна ось симметрии 2-го порядка, левая и правая формы); б - класс m (одла плоскость симметрии); в - класс (центр симметрии); г - класс 6 (одна инверсионная ось 6-го порядка); д - класс 432 (оси 4-го, 3-го и 2-го порядков).

объект совмещается сам с собой при повороте на любой, в т. ч. бесконечно малый, угол (изотропные твердые тела , текстуры). Таких групп 7 (рис. 7). Т. обр., всего имеется 39 точечных групп, описывающих симметрию св-в кристаллов.

Рис. 7. Фигуры, иллюстрирующие предельные группы симметрии .

пространств. групп антисимметрии G 3,а 0 (шубниковские группы). Если добавочная переменная приобретает не два значения, а несколько (возможны числа 3, 4, 6, 8, ..., 48), то возникает цветная симметрия Белова. Так, известна 81 точечная группа G 3,и 0 и 2942 группы С 3,и 3 . Развит и аппарат симметрии в пространстве 4, 5 измерений, позволяющий описывать сверхпериодичные, т. наз. соразмерные и несоразмерные структуры сегнетоэлектриков , магн. и иных структур.

Рис. 10. Фигура, описываемая точечной группой антисимметрии.

Строение реальных кристаллов. Неравновесные условия кристаллизации приводят к разл. отклонениям формы кристаллов от плоских граней - к округлым граням и ребрам (вициналям), возникновению пластинчатых, игольчатых, нитевидных (см. Нитевидные кристаллы), ветвистых (дендритных), кристаллов типа снежинок. Если в объеме расплава образуется сразу большое число центров кристаллизации , то разрастающиеся кристаллы, встречаясь друг с другом, приобретают форму неправильных зерен. Нередко возникают микроскопии , двойники и др. сростки. При выращивании кристаллов не стремятся обязательно получить их в правильной кристаллографич. огранке, главный критерий качества - однородность и совершенство атомной структуры, отсутствие ее дефектов . Нек-рым кристаллам при выращивании придается форма требуемого изделия - трубы, стержня, пластинки. Вследствие нарушения равновесных условий роста и захвата примесей при кристаллизации , а также под влиянием разл. рода внеш. воздействий идеальная трехмерно-периодич. атомная структура кристалла всегда имеет те или иные нарушения. К ним относят точечные дефекты - вакансии, замещения

Жидкие вещества, состоящие из регулярно расположенных атомов, молекул, ионов или их групп. Размер последних может составлять 10-10000 нм и более. В твёрдых веществах эти частицы уложены в одинаковые параллелепипеды, так называемые элементарные ячейки. Ячейку можно представить как вложение друг в друга нескольких Браве решёток, в каждой из которых узлы заняты атомами одного сорта. Число вложений определяется количеством в кристалле сортов атомов в неэквивалентных положениях. Периодическое повторение в пространстве элементарной ячейки составляет кристаллическую структуру, а всех вложенных решёток Браве - кристаллическую решётку. Жидкие кристаллы сложены из параллельно ориентированных органических молекул, удлинённых в отношении, большем чем около 1:2,5. В так называемых смектических жидких кристаллах эти слои примерно параллельны друг другу.

Симметрия кристаллов. Необходимость сплошного регулярного заполнения пространства допускает возможность в кристаллах осей симметрии только 2, 3, 4 и 6-го порядков, т. е. совмещения кристалла (всех его частей) с самим собой при поворотах вокруг оси на 180°, 120°, 90° и 60°. Кристалл может обладать другими операциями симметрии - плоскостями симметрии и центром симметрии (смотри Симметрия кристаллов). Совокупность всех операций симметрии, оставляющих одну точку неподвижной, образует точечную группу симметрии кристалла. Группа атомов, периодическим повторением которой построена любая структура кристаллов, принадлежит к одному из 32 классов точечной симметрии, а вся структура - к одной из 230 групп пространственной симметрии. 32 класса точечной симметрии распределены по 7 системам (сингониям). В порядке понижения симметрии это: кубическая, гексагональная, тригональная, тетрагональная, ромбическая, моноклинная и триклинная сингонии. В этом порядке увеличивается количество произвольных углов и неравных длин сторон элементарной ячейки. Симметрия кристалла налагает ограничения на возможные его свойства. Так, кристаллы с центром симметрии не могут спонтанно иметь противоположно заряженные грани, т. е. быть пироэлектриками или сегнетоэлектриками.

Структура и симметрия кристалла следуют из характера взаимодействия между его частицами. В кристалле это электромагнитное взаимодействие, которое определяется, прежде всего, электронами. Тип химической связи между атомами в кристаллах определяет многие их свойства (смотри Ионные кристаллы, Ковалентные кристаллы, Металлические кристаллы, Молекулярные кристаллы).

Кристаллы данного химического состава и структуры существуют лишь в определённых интервалах температуры и давления. Например, лёд при атмосферном давлении устойчив лишь ниже 0 °С, железо - ниже 1538 °С. Вне этих интервалов кристаллы либо плавятся, либо испаряются, либо, оставаясь твёрдыми, меняют расположение частиц, т. е. структуру, переходя в другую, так называемую полиморфную, модификацию (смотри Фазовый переход). Сростки кристаллов различной ориентации и порошки называют поликристаллами.

Структуру кристалла обычно определяют методом рентгеновского структурного анализа. Кристалл можно представить как совокупность взаимно параллельных и всевозможно ориентированных семейств плоскостей, вдоль которых расположены атомы кристалла. Поверхностная плотность атомов в каждом семействе различна. Рентгеновский луч отражается наиболее интенсивно от плоскостей кристалла с наибольшей плотностью атомов. Регистрируя интенсивности отражений под разными углами, расшифровывают не только структуру кристалла, но и структуру составляющих его молекул. Чем больше размеры элементарной ячейки и чем совершеннее кристалл, тем больше измеримых отражений можно получить и тем точнее определить координаты атомов. Структуры сотен тысяч неорганических соединений собраны в международных банках данных. Выращивание более 20 тысяч кристаллов из молекул белков и вирусов позволило определить строение этих биологических молекул и частиц, содержащих иногда десятки тысяч атомов (смотри Биологический кристалл). Современные электронная, атомно-силовая и туннельная микроскопии позволяют увидеть атомную структуру кристалла (рис. 1).

Кристаллы в природе . Большинство веществ на Земле и других планетах находится в твёрдом кристаллическом состоянии. Кристаллы в природе называют минералами. Они составляют минеральное сырьё, например соли и оксиды металлов (руды), кварц (SiO 2), кальцит (СаСО 3 , в мелкокристаллической форме - мрамор), гранитный кристалл, входящие в состав живых организмов, - биоминералы, они преимущественно являются малорастворимыми солями металлов (Са, Mg, Mn и др.) угольной или фосфорных кислот, чередующимися с отложением белков. Кости и зубы на 70% состоят из кристалла гидроксиапатита, в элементарную ячейку которого входят две молекулы Са 5 (РО 4) 3 ОН. Размер кристалла биоминералов - от нескольких нм до нескольких мкм. Камни в почках и поджелудочной железе могут достигать нескольких мм и см. Кристаллы полимеров состоят из параллельных слоёв, в которые уложены длинные цепи полимерных молекул.

Коллоидные частицы размером 10 2 - 10 3 нм, одинаково заряженные адсорбированными на них ионами жидкости, упорядочиваются в этой жидкости в коллоидные кристаллы, так как плотная упаковка в кристаллах позволяет разместить в единице объёма больше частиц, чем при хаотичном размещении.

Природные опалы - это плотноупакованные шарики аморфного SiO 2 с диаметром, близким к длине волны видимого света (около 0,5 мкм), «склеенные» наполнителем межчастичного пространства (смотри Фотонный кристалл).

Форма кристаллов. Форма необработанного кристалла - это форма его роста (смотри Кристаллизация); она отражает атомную структуру кристалла. Плоскости кристалла, в которых плотность атомов наибольшая, растут наиболее медленно, путём последовательной генерации и распространения новых слоёв толщиной в одну или несколько элементарных ячеек. Поэтому именно ими обычно и ограничиваются кристаллические многогранники, вырастающие из паров, растворов или химически сложных расплавов. У веществ с низкой энтропией плавления, например у металлов, тепловое движение разупорядочивает поверхности любой ориентации. Тогда кристалл растёт с почти одинаковой скоростью во всех направлениях и имеет почти сферическую форму. Эта форма неустойчива и превращается в так называемую дендритную (рис. 2). Металлургический слиток - это конгломерат сросшихся переплетённых дендритов. Снежинки представляют собой выросшие из паров дендриты льда. Несмотря на причудливую форму, дендрит имеет единую кристаллическую решётку, т. е. является монокристаллом.

Совокупность кристаллографически одинаковых граней, т. е. граней, совмещающихся друг с другом при операциях симметрии данного класса точечной симметрии, образует так называемую простую форму кристалла. Всего существует 47 простых форм, но в каждом классе могут реализоваться лишь некоторые из них. Кристалл может быть огранён гранями одной простой формы (рис. 3, а), но чаще гранями, возникающими в результате комбинации этих форм (рис. 3, б, в). Кристалл, принадлежащий к классу, содержащему только поворотные оси симметрии (не содержащему плоскостей, центра симметрии или инверсионных осей), например кварц, может кристаллизоваться в зеркально различных формах - правой и левой (так называемый энантиоморфизм).

Свойства кристаллов зависят от направления в кристалле, т. е. кристалл анизотропен. Например, одна и та же разность потенциалов, приложенная в разных направлениях в монокристалле, вызывает различный электрический ток. Зависимость направления и силы тока от приложенного электрического поля описывается тензором проводимости 2-го ранга, а не одним числом, как в случае проводимости аморфного твёрдого тела или жидкости. Количество независимых и ненулевых компонентов тензора определяется точечной симметрией кристалла. Аналогично, внешнее электрическое поле, по-разному ориентированное относительно кристаллической решётки диэлектрика, вызывает различное смещение ионов (поляризацию), не параллельное приложенному полю. Поэтому скорость света в некубическом кристалле, например КН 2 РО 4 (KDP), зависит от направления в кристалле, а луч света раздваивается. Оба луча могут идти параллельно в избранных направлениях (синхронизм), и тогда электрические поля их световых волн складываются. Тензор диэлектрической проницаемости 2-го ранга кристалла зависит от поля через тензор 3-го ранга электрооптического коэффициента. В результате возникает вторая гармоника, т. е. частота света, прошедшего через KDP, удваивается. Это находит применение в оптике, в частности в создаваемых лазерных установках для получения энергии за счёт слияния ядер дейтерия и трития. Электрооптический эффект используется также для отклонения луча света, проходящего через кристалл, приложением разности потенциалов к кристаллу. Тензор 3-го ранга пьезоэлектрического коэффициента определяет разность потенциалов между гранями кристалла, то есть вектор электрической поляризации кристалла, вызванной механической нагрузкой на кристалл (тензором напряжений в кристалле). Эффект используется для измерения малых напряжений и смещений. Обратный эффект - деформация кристалла под действием приложенного поля (смотри Электрострикция), управляет движением иглы - щупа поверхности в сканирующем туннельном и атомно-силовом микроскопах.

Дефекты кристалла - это нарушение строгой периодичности его структуры. К точечным дефектам относятся пустые узлы (вакансии), чужеродные частицы в узлах решётки или междоузлиях (примеси); линейные дефекты - дислокации, представляющие собой края незавершённых плоскостей решётки внутри кристалла (рис. 1); двумерные дефекты - границы повёрнутых относительно друг друга областей кристалла, дефекты упаковки, границы двойников. В кристалле нередки макроскопические включения, а также внутренние механические напряжения, вызываемые точечными, линейными и двумерными дефектами. Почти все дефекты существенно изменяют полупроводниковые свойства кристалла, уменьшают электропроводность металлов; примеси и вакансии меняют окраску диэлектриков, влияют на лёгкость переполяризации сегнетоэлектриков и перемагничивания ферромагнетиков и т. п. Дислокации, границы зёрен и дефекты упаковки полностью определяют пластичность и прочность кристаллов, но мало влияют на их упругость.

Выращивание кристаллов . Выращивают монокристаллы чаще всего из расплавов, реже из растворов и паров (смотри Кристаллизация). Преимущество расплавов - в близости плотностей кристалла и расплава, что позволяет достичь максимальный скорости роста (порядка нескольких мм/мин). Напротив, тонкие монокристаллические плёнки для электроники получают главным образом в процессах газофазовых, преимущественно поверхностных, химических реакций, а также конденсацией молекулярных пучков в вакууме со скоростью порядка нескольких нм/мин на пластинах, вырезанных из монокристаллов. При этом используют явление эпитаксии - ориентированного нарастания одного кристалла на другом. К началу 21 века в промышленности полупроводниковых кристаллов выращивается около 6 тысяч тонн кристаллов кремния в год. Монокристаллы бездислокационного Si с плотностью точечных дефектов порядка 10 -10 от плотности атомов, с диаметром до 30 см и длиной до 2 м вытягивают из расплава. Близкие методы используются при выращивании лазерных кристаллов меньшего размера. Скорость роста кристаллов из раствора гораздо ниже (порядка нескольких мм/сутки), однако усилия, в том числе совместные, учёных России и США позволяют промышленно выращивать кристаллы KDP размером около 0,5 м (рис. 4) со скоростью около 1,5 см/сутки при сохранении высокого совершенства. Главными взаимосвязанными проблемами выращивания остаются совершенство и чистота кристаллов.

Поликристаллические слитки металлов - главная продукция металлургии. Управление размером, формой и эволюцией этих кристаллов, исследование роли добавок, их подбор и многие другие вопросы - предмет металловедения. Поликристаллы в виде порошков также широко производятся промышленностью. Нанокристаллы размером 1-100 нм (рис. 5) получают при химических реакциях в растворах или газах. Чтобы избежать укрупнения нанокристаллов, вызываемого уменьшением их общей поверхностной энергии, они покрываются тонкими оболочками. Перспективно также выращивание длинных (порядка нескольких мм) нанотрубок - свёрнутых слоёв графита, а также нитевидных кристаллов.

Применение кристаллов . Кристаллы - основа множества современных устройств. Они главные функциональные элементы твердотельной электроники: компьютеров, генераторов и приёмников излучения (в том числе лазерного), устройств магнитной записи, бытовой электроники и т. п. кристаллы широко используются в оптике, а также в качестве конструкционных материалов (например, сапфир) во множестве различных датчиков и других точных приборов. Кристаллические порошки (соль, сахар, лекарства, минеральные удобрения, взрывчатые вещества и др.) широко применяются в пищевой, фармацевтической промышленности, сельском хозяйстве, металлургии и других областях.

Лит.: Современная кристаллография. М., 1979-1981. Т. 1-4; Чупрунов Е. В., Хохлов А. Ф., Фаддеев М. А. Кристаллография. М., 2000; Ландау Л. Д., Лифшиц Е. М. Статистическая физика. 5-е изд. М., 2001.

Введение

Кристалл. Что можно себе представить, услышав это слово? В народе говорят, что кристалл растёт. Почему же он может расти? Ведь это не растение. Чтобы это узнать я провела исследование.

Мне стало интересно, чем кристалл служит человеку, как его добывают, можно ли выращивать кристалл и как это сделать. Кристаллы люди используют в строительстве, при производстве ювелирных изделий, часов, электронных приборов, компьютерной техники.
Но, где взять столько кристаллов? Думаю, что в природе найти нужный кристалл сложно, поэтому его можно вырастить искусственно. Я решила попробовать вырастить кристалл у себя дома.

Для исследования я составила такой план работы. 1. Что такое кристалл? 2. История кристалла. 3. Выращивание кристалла в домашних условиях. 4. Чем кристалл служит человеку? 5. Мой эксперимент.

Что такое кристалл?

Кристалл — это обычно твердое вещество, но бывают и жидкие кристаллы. Каждое вещество состоит из маленьких частиц (молекул или атомов). Можно назвать их кирпичиками. Обычно в веществе кирпичики разные и по-разному соединяются друг с другом, т. е. получаются странные узоры. А в кристалле кирпичики одинаковые, они одинаково соединяются друг с другом, повторяются в точно такой же последовательности по всему веществу, т. е. получаются узоры правильной формы. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы. Фотографии кристаллов, которые мне очень понравились, я поместила в приложение А.

История кристалла

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Сначала слово «кристалл» означало в переводе с греческого только «лёд». Потом так стали называть прозрачные кристаллы кварца, который ещё называется горный хрусталь. Люди думали, что горный хрусталь — это лёд, который не тает в тепле. Удивительной особенностью горного хрусталя являются его гладкие плоские грани. Возникла догадка, что форма может быть связана с внутренним строением. А потом учёные доказали, что строение кристалла имеет повторяющийся рисунок. Более подробную информацию об истории кристаллов я поместила в приложение Б.

Выращивание кристалла в домашних условиях

Выращивание кристаллов — процесс очень интересный, но бывает достаточно длительным. Когда выращивают кристалл, разбирают все строительные блоки (молекулы) на отдельные элементы в воде и дают им возможность естественно занять соответствующую позицию в повторяющейся структуре, когда вода испарится.

Кристаллы можно выращивать разными способами. Я попробовала вырастить кристалл из химического вещества. Я взяла набор для творчества «Лиловый кристалл на разноцветных камнях» и по указаниям инструкции, предусмотренной в наборе, вырастила кристалл. Я описала свои действия и наблюдения в разделе «Мой эксперимент». Несмотря на разнообразие способов выращивания, можно увидеть у всех них общие черты. Этапы процесса выращивания и другие известные способы выращивания я поместила в приложение В.

Чем кристалл служит человеку?

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет. Поэтому ограничимся несколькими примерами.

Твердые и жидкие кристаллы используют в технике: при производстве телевизоров, компьютеров, микроволновых печей и других электронных приборов благодаря их электрическим и оптическим свойствам.

Алмаз, рубин, сапфир, гранат и кварц — это не только красивые драгоценные и полудрагоценные камни, которые используются для ювелирных украшений. Алмаз применяют при производстве инструментов для распиливания сверхпрочных материалов. Лазер делается с использованием рубина и граната. Вся часовая промышленность работает на искусственных рубинах. Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Другие примеры полезного применения кристаллов я поместила в приложение Г.

Мой эксперимент

Я провела эксперимент по выращиванию кристалла в домашних условиях. Для эксперимента я взяла набор для творчества «Лиловый кристалл на разноцветных камнях», который мне подарила бабушка.

Сначала я взяла контейнер для кристаллов и высыпала туда камешки. Потом я приготовила насыщенный раствор. Насыщенный раствор — это такой раствор, в котором растворяемого химического вещества находится так много, что оно больше не растворяется. Я налила горячей кипяченой воды в ёмкость для размешивания, насыпала туда крупинки химического вещества, затем перемешала раствор и аккуратно вылила его в контейнер для кристалла. Потом я наполнила емкость для размешивания горячей кипяченой водой ещё раз, на этот раз наполовину. Я перемешивала раствор около пяти минут, добавляя в него химическое вещество. После пяти минут перемешивания я аккуратно слила раствор в контейнер для кристаллов.

Далее я посеяла «семена» кристалла. «Семена» кристалла — это такие же крупинки химического вещества, из которых я готовила раствор. Несколько крупинок я высыпала в раствор. Они осели на камешках внутри контейнера для кристалла.

Я поставила контейнер на полку в книжный шкаф, чтобы он не подвергался перепадам температур, чтобы его не тревожила громкая музыка, чтобы рядом не было оживлённого перемещения людей и животных. Фотографии, сделанные в первый день эксперимента, я поместила в приложение Д. Я наблюдала за ростом кристалла каждый день и фотографировала кристалл. Он рос медленно и едва заметно. Кусочки кристалла выросли именно там, куда упали «семена». Фотографии, полученные в ходе эксперимента я поместила в приложение Е.

Когда я заметила, что кусочек кристалла вылез из воды, я поняла, что кристалл вырос. Это произошло через четырнадцать дней. Тогда я вылила раствор и промыла кристалл холодной водой из под крана.. Он получился прозрачно-лилового цвета, похожий на травку из хрусталя.

Заключение

Кристаллы имеют чёткую, повторяющуюся структуру, бывают твердыми и жидкими. Они встречаются в природе и могут быть выращены человеком. Красивые кристаллы образуются тогда, когда кристаллизация атомов и молекул вещества в узоры правильной формы происходит очень медленно. Кристалл растёт потому, что вода из насыщенного раствора постепенно испаряется, а кристаллическое вещество переходит из жидкого состояния в твёрдое, так как «кирпичики» (атомы и молекулы) притягиваются друг к другу и самостоятельно занимают место в повторяющейся структуре.

Кристаллы очень полезны для человека. В некоторых случаях без них не обойтись. Например, если нужно разрезать камень, не обойтись без алмаза, а если нужно сделать часы, то не обойтись без рубина. Микропроцессоры в компьютерах сделаны из кремния, а без жидко-кристаллических дисплеев мы не можем уже себе представить никакой электронный прибор. Действительно, найти нужный кристалл в природе очень сложно. Гораздо проще и дешевле его вырастить искусственно. Это делается в промышленном производстве. Но можно вырастить кристалл и в домашних условиях.

У меня получилось вырастить кристалл за четырнадцать дней с помощью набора для творчества. Мой эксперимент показал, что кристалл можно выращивать в домашних условиях. Мне понравилось выращивать кристалл — это очень увлекательное занятие. Я узнала много способов выращивания кристаллов. В будущем я бы хотела вырастить красивые кристаллы разных цветов другими способами.

Список использованных источников

Приложение А.
Разнообразие кристаллов

Сера самородная

Вульфенит

Тетраэдрит

Аквамарин

Медный купорос

Поваренная соль

Данбурит

Кристаллик сахара

Турмалин

Скаполит

Кристаллы меди

Кварц

Приложение Б.
Подробнее об истории кристаллов

Кристаллами называют все природные правильные формы минералов и других твердых веществ. Минералы делят на две группы: самородки, встречающиеся в природе чистом виде, например золото, углерод (в виде графита и алмаза) и соединения — комбинацию двух и более элементов, например пирит — соединение серы с железом. Минералы в породе представлены и мелкими зернами, и крупными кристаллами. Минералы образуют красивые кристаллы, если растут медленно.

Кристалл — это твердое вещество, молекулы (или атомы, ионы) которого организованы в четкой повторяющейся схеме. В некоторых твердых веществах организация строительных блоков (т.е. атомов и молекул) может быть случайной или очень отличающейся по всему веществу. В кристаллах же, набор атомов, называемых «элементарная ячейка», повторяется точно в такой же последовательности целиком по всему материалу. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы.

Ещё кристаллы бывают жидкими. Жидкие кристаллы — это вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной). Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах они замерзают, превращаясь в твёрдые тела.

Сначала «кристалл» означало в переводе с греческого только «лёд». Потом философ Теофраст, в третьем веке до нашей, эры назвал так прозрачные кристаллы кварца (горного хрусталя), обнаруженные в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится.

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в Сёсоине, сокровищнице японских императоров в Нара. Одна из наиболее ранних зарисовок кристаллов содержится в китайской фармакопее одиннадцатого века нашей эры. В конце эпохи средневековья, в пятнадцатом веке, слово «кристалл» стало употребляться в более общем смысле.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце семнадцатого века было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. В конце концов кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

В восемнадцатом веке французский аббат Р. Гаюи выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей как в форме «кирпичиков», так и в способе их укладки. С восемнадцатого века кристаллом называют все природные правильные формы минералов и других твердых веществ.

При росте кристалла в идеальных условиях форма его в течение роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются атомы или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку.

Считается, что состояние жидкого кристалла открыл в 1888 австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов, которые он изучал, было два разных жидких состояния — мутное и прозрачное. Он отметил также, что при нагревании изменяется цвет жидкого кристалла - от красного к синему, с повторением в обратном порядке при охлаждении. Однако учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Научное доказательство существования жидких кристаллов было предоставлено Отто Леманном после многолетних исследований, в 1904 году.

Приложение В.
Несколько способов выращивания кристаллов
в домашних условиях

Основные этапы выращивания кристаллов

Процесс выращивания кристаллов в домашних условиях можно разделить на основные этапы.

Этап 1. Растворить соль, из которой будет расти кристалл, в подогретой воде (подогреть нужно для того, чтобы соль растворилось немного больше, чем может раствориться при комнатной температуре). Растворять соль нужно до тех пор, пока не появится уверенность, что соль уже больше не растворяется (раствор насыщен!). Рекомендуется использовать дистиллированную воду, т. е. не содержащую примесей других солей.

Этап 2. Насыщенный раствор нужно перелить в другую ёмкость, где можно производить выращивание кристаллов (с учётом того, что он будет увеличиваться). На этом этапе нужно следить, чтобы раствор не особо остывал.

Этап 3. Привязать на нитку кристаллик соли, нитку можно привязать, например, к карандашу и положить его на края стакана (ёмкости), где налит насыщенный раствор (этап 2). Кристаллик опустить в насыщенный раствор.

Этап 4. Перенести ёмкость с насыщенным раствором и кристалликом в место, где нет сквозняков, вибрации и сильного света (выращивание кристаллов требует соблюдение этих условий).

Этап 5. Накрыть чем-нибудь сверху ёмкость с кристалликом (например бумагой) от попадания пыли и мусора. Оставить раствор на пару дней.

Важно помнить:

1) кристаллик нельзя при росте без особой причины вынимать из раствора;

2) не допускать попадание мусора в насыщенный раствор, наиболее предпочтительно использовать дистиллированную воду;

3) следить за уровнем насыщенного раствора, периодически (раз в неделю или две) обновлять при испарении раствор.

Выращивание кристаллов из квасцов

Чтобы вырастить кристалл из квасцов понадобятся: кастрюля, мерный стакан, 2 стакана, карандаш, нитки, вода, 30 г квасцов из аптеки. Из квасцов можно вырастить очень красивый кристалл. Нужно нагреть в кастрюле 100 мл воды. Только нельзя доводить до кипения. Потом следует растворить в ней квасцы. Потом нужно перелить раствор в стакан и дать немного остыть. Потом следует привязать нитку к середине карандаша. Далее следует положить карандаш на край стакана, чтобы нитка оказалась в растворе. После того как на нитке образуются крошечные кристаллы, нужно вытащить её из раствора. Теперь следует снять с нитки все кристаллы, оставить лишь самый крупный. Далее нужно ещё раз слегка нагреть раствор, налитый в стакан и перемешать его. Теперь нужно перелить его без осадка во второй стакан. Далее нужно снова подвесить нитку с кристаллом. Теперь нужно ждать и наблюдать. Через несколько дней получится кристалл из квасцов.

Выращивание кристаллов из поваренной соли

Ещё можно выращивать кристаллы поваренной соли. Процесс выращивания не требует наличия каких-то особых химических препаратов. Нужно развести раствор поваренной соли следующим образом: налить воды в ёмкость (например стакан) и поставить его в кастрюлю с тёплой водой (не более 50°С — 60°С). Нужно насыпать пищевую соль в стакан и оставить минут на 5, предварительно помешав. За это время стакан с водой нагреется, а соль растворится. Желательно, чтобы температура воды пока не снижалась. Затем нужно добавить ещё соль и снова перемешать. Следует повторять этот этап до тех пор, пока соль уже не будет растворяться и будет оседать на дно стакана. Мы получим насыщенный раствор соли. Нужно перелить его в чистую ёмкость, избавившись при этом от излишек соли на дне. Нужно выбрать любой понравившийся более крупный кристаллик поваренной соли и положить его на дно стакана с насыщенным раствором. Можно кристаллик привязать за нитку и подвесить, чтобы он не касался стенок стакана. Теперь нужно подождать. Уже через пару дней можно заметить значительный для кристаллика рост. С каждым днём он будет увеличиваться. А если проделать всё то же ещё раз (приготовить насыщенный раствор соли и опустить в него этот кристаллик), то он будет расти гораздо быстрее (нужно извлечь кристаллик и использовать уже приготовленный раствор, добавляя в него воды и необходимую порцию пищевой соли). Не следует забывать, что раствор должен быть насыщенным, то есть при приготовлении раствора на дне стакана всегда должна оставаться соль (на всякий случай). Для сведений: в 100 г воды при температуре 20°С может раствориться приблизительно 35 г поваренной соли. С повышением температуры растворимость соли растёт. Так выращивают кристаллы поваренной соли (или кристаллы соли, форма и цвет которых больше нравится).

Выращивание кристаллов из медного купороса

Можно выращивать и кристаллы медного купороса. Кристаллы медного купороса — выращиваются подобным образом, также, как с поваренной солью: сначала готовится насыщенный раствор, затем в этот раствор опускается понравившийся маленький кристаллик соли медного купороса.

Приложение Г.
Практическое применение кристаллов

Электрические и оптические свойства кристаллов

Кристаллы сыграли важную роль во многих технических новинках двадцатого века. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых лазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения.

Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Их свойствами можно управлять, подвергая действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров.

Алмаз

Самый твердый и самый редкий из природных минералов — алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила — это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин, сапфир, гранат и наждак

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазорево-синий сапфир — это родные братья, это вообще один и тот же минерал — корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись титана — в сапфир. Есть корунды и других цветов. Есть у них ещё со-всем скромный, невзрачный брат: бурый, непрозрачный, мелкий корунд — наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями — это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки. Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов. Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кварц

Кремень, аметист, яшма, опал, халцедон — все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца — это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это — пьезоэлектрический эффект в кристаллах. В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие. Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате-лей при взрыве в них горячих газов.

Электрооптическая промышленность — это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обрабатывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

Поляроид

В технике также нашел своё применение поликристаллический материал поляроид. Поляроид — это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики расположены параллельно друг другу, поэтому все они одинаково поляризуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомобильных фонарей сделать из поляроида, причем повернуть оба поляроида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Приложение Д.
Начало эксперимента

1. Достаём всё необходимое для выращивания кристалла: инструкцию, ёмкость для размешивания, контейнер для выращивания, цветные камешки, химическое вещество, палочку для размешивания.

2. Чтобы не получить химический
ожог, одеваем перчатки.

3. Высыпаем цветные камешки
в контейнер для выращивания.

4. Делаем химический раствор, заливаем камешки раствором, добавляем «семена» кристалла и ставим в тихое, спокойное место.

Приложение Е.
Фотодневник эксперимента

МОУ «Гимназия №21»

Кристаллы
в природе, науке и технике

Белоусов Александр

3 «Б» класс

г. Электросталь

Что такое кристалл? 5

Из истории кристалла 7

Кристаллы в природе 10

Кристаллы в науке и технике 12

Выращиваем кристалл в домашних условиях 18

Заключение 21

Список информационных источников 22

Введение

Тема моего проекта – кристаллы и их место в природе и науке.

Целью моего проекта является узнать, что такое кристаллы, откуда они возникают, их значимость для человека.

Для достижения цели проекта мне придется решить следующие задачи:


  1. Найти литературу о кристаллах и их фотографии;

  2. Изучить природу кристаллов;

  3. Узнать, какое значение имеют кристаллы в жизни человека;

  4. Попытаться вырастить кристалл в домашних условиях, если это возможно.
Я предполагаю, что кристаллы занимают значительное место в жизни человека: они широко применяются в науке и технике, а также в ювелирной промышленности.

Что такое кристалл?

Кристалл - это обычно твердое вещество, но бывают и жидкие кристаллы. Каждое вещество состоит из маленьких частиц (молекул или атомов). Можно назвать их кирпичиками. Обычно в веществе кирпичики разные и по-разному соединяются друг с другом, т. е. получаются странные узоры. А в кристалле кирпичики одинаковые, они одинаково соединяются друг с другом, повторяются в точно такой же последовательности по всему веществу, т. е. получаются узоры правильной формы. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы:

Сера самородная


Вульфенит


Тетраэдрит


Аквамарин


Медный купорос


Поваренная соль


Скаполит


Кристаллы меди


Кварц

Из истории кристалла

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Сначала слово «кристалл» означало в переводе с греческого только «лёд». Потом так стали называть прозрачные кристаллы кварца, который ещё называется горный хрусталь. Люди думали, что горный хрусталь - это лёд, который не тает в тепле.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце семнадцатого века было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма кристалла может быть связана с его внутренним строением, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента.

В восемнадцатом веке французский аббат Р. Гаюи выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Р. Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей как в форме «кирпичиков», так и в способе их укладки. С восемнадцатого века кристаллом называют все природные правильные формы минералов и других твердых веществ.

Минералы в породе представлены и мелкими зернами, и крупными кристаллами. Минералы образуют красивые кристаллы, если растут медленно.

При росте кристалла в идеальных условиях его форма в течение роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются атомы или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку.


Виды кристаллов


Идеальный

Абсолютно симметричный с идеализированно ровными гладкими гранями


Реальный

Имеющий различные дефекты внутренней структуры решетки, искажения и неровности на гранях, пониженную симметрию вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл сохраняет главное свойство - закономерное положение атомов в кристаллической решётке

Ещё кристаллы бывают жидкими. Жидкие кристаллы - это вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной). Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах они замерзают, превращаясь в твёрдые тела.

Считается, что состояние жидкого кристалла открыл в 1888 австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов, которые он изучал, было два разных жидких состояния - мутное и прозрачное. Он отметил также, что при нагревании изменяется цвет жидкого кристалла – от красного к синему, с повторением в обратном порядке при охлаждении. Однако учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Научное доказательство существования жидких кристаллов было предоставлено в 1904 году Отто Леманном после многолетних исследований.


Фотографии жидких кристаллов


Кристаллы по происхождению


Естественные

Выросшие в природе без участия человека


Искусственные

Выращенные человеком в специальных условиях

Кристаллы в природе

По размерам природные кристаллы могут быть самыми разными: от микроскопических до весьма крупных вплоть до нескольких метров длиной и в поперечном сечении. Внешний облик кристаллов зависит от того, насколько спокойно происходил их рост. Большинство кристаллов в природе растут медленно - тысячи и миллионы лет. Некоторые кристаллы растут очень быстро, например кристаллы растворимых солей (сера, таблички гематита) в кратерах действующих вулканов.

Кристаллы образуются, когда какое-либо вещество или их комплекс переходит из жидкого или газообразного состояния в твердое. Рост кристалла начинается с образования зародышей и скелетных форм. При длительном равномерном и беспрепятственном поступлении вещества со всех сторон возникают нормальные кристаллические формы, но в большинстве случаев кристаллы стеснены в своем росте соседними телами (соседними кристаллами). Это приводит к образованию несовершенных кристаллов с искаженными гранями, так как поступление растворов, питающих кристалл, происходит с разных сторон неравномерно.

Гигантские кристаллы пещеры Naica в Мексике

Кристаллы в науке и технике

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет. Поэтому ограничимся несколькими примерами.

Твердые и жидкие кристаллы используют в технике: при производстве телевизоров, компьютеров, микроволновых печей и других электронных приборов благодаря их электрическим и оптическим свойствам.

Алмаз, рубин, сапфир, гранат и кварц - это не только красивые драгоценные и полудрагоценные камни, которые используются для ювелирных украшений. Алмаз применяют при производстве инструментов для распиливания сверхпрочных материалов. Лазер делается с использованием рубина и граната. Вся часовая промышленность работает на искусственных рубинах. Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Физические науки, изучающие кристаллы:

Кристаллофизика - изучает совокупность физических свойств кристаллов;

Кристаллография - изучает идеальные кристаллы c позиций законов симметрии и сопоставляет их с кристаллами реальными;

Структурная кристаллография - занимается определением внутренней структуры кристаллов и классификацией кристаллических решеток;

Кристаллооптика - изучает оптические свойства кристаллов;

Кристаллохимия - изучает кристаллические структуры и их связи с природой вещества.

Электрические и оптические свойства кристаллов

Кристаллы сыграли важную роль во многих технических новинках двадцатого века. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых лазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения.

Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Их свойствами можно управлять, подвергая действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров.
Алмаз

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин, сапфир, гранат и наждак

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазорево-синий сапфир - это родные братья, это вообще один и тот же минерал - корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись титана - в сапфир. Есть корунды и других цветов. Есть у них ещё совсем скромный, невзрачный брат: бурый, непрозрачный, мелкий корунд - наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки. Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов. Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кварц

Кремень, аметист, яшма, опал, халцедон - все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это - пьезоэлектрический эффект в кристаллах. В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие. Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате­лей при взрыве в них горячих газов.

Электрооптическая промышленность - это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обрабатывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

Выращиваем кристалл в домашних условиях

Процесс выращивания кристаллов в домашних условиях не требует наличия каких-то особых химических препаратов. Я решил вырастить кристалл сульфата меди – медного купороса. Выращивание кристалла из медного купороса в домашних условиях позволяет получить кристалл красивого синего цвета.

Медный купорос имеет широкое применение в сельском хозяйстве, используется в качестве удобрения и продается в магазинах товаров для дачи. Чтобы вырастить кристалл из медного купороса мне потребуется:


  1. Медный купорос;

  2. Вода (дистиллированная или обычная кипяченая);

  3. Стеклянная банка;

  4. Столовая ложка;

  5. Нитка;

  6. Деревянная палочка.


Порядок действий при выращивании кристалла медного купороса


  1. На начальном этапе готовим перенасыщенный раствор. Наливаем в банку примерно 300 мл горячей воды. Начинаем добавлять медный купорос. Насыпаем столовую ложку медного купороса и размешиваем. Купорос очень быстро растворится. Добавляем еще ложку, снова размешиваем. Делаем так до тех пор, пока купорос не начнет оседать на дне. Раствор получился перенасыщенным.




  1. Готовим «затравку». Затравкой может быть крупный кристалл медного купороса, бусина, пуговица или просто обычная нитка. Я буду использовать обычную нитку.

  1. Помещаем нитку внутрь банки с полученным раствором. При этом нитка не должна касаться стенок сосуда или его дна. Поэтому привязываем нитку к палочке по середине и кладем ее поперек горлышка банки.




  1. Оставляем конструкцию в покое в прохладном месте и ждем, пока начнут образовываться кристаллы. Как только нитка обрастет кристаллами медного купороса, заменим перенасыщенный раствор новым.

  1. Многократно меняя перенасыщенный раствор и размер банки можно вырастить кристалл довольно-таки большого размера.

  1. Получаем кристалл медного купороса





Заключение

Кристаллы имеют чёткую, повторяющуюся структуру, бывают твердыми и жидкими. Они встречаются в природе и могут быть выращены человеком. Красивые кристаллы образуются тогда, когда кристаллизация атомов и молекул вещества в узоры правильной формы происходит очень медленно. Кристалл растёт потому, что вода из насыщенного раствора постепенно испаряется, а кристаллическое вещество переходит из жидкого состояния в твёрдое, так как «кирпичики» (атомы и молекулы) притягиваются друг к другу и самостоятельно занимают место в повторяющейся структуре.

Кристаллы очень полезны для человека. В некоторых случаях без них не обойтись. Например, если нужно разрезать камень, не обойтись без алмаза, а если нужно сделать часы, то не обойтись без рубина. Микропроцессоры в компьютерах сделаны из кремния, а без жидкокристаллических дисплеев мы не можем уже себе представить никакой электронный прибор. Действительно, найти нужный кристалл в природе очень сложно, гораздо проще и дешевле вырастить его искусственно. Это делается в специальном промышленном производстве. Но можно вырастить кристалл и в домашних условиях.


  1. Жидкие кристаллы // Википедия - Электронный ресурс:
http://ru.wikipedia.org/wiki/%C6%E8%E4%EA%E8%E5_%EA%F0%E8%F1%F2%E0%EB%EB%FB

  1. Жидкие кристаллы, история открытия жидких кристаллов, структура, типы и их применение - Электронный ресурс:
http://articles.excelion.ru/science/fizika/52788977.html

  1. Применение кристаллов // Кристаллы - Электронный ресурс:
http://kristal.21428s12.edusite.ru/p8aa1.html

  1. Выращивание кристаллов в домашних условиях. Как вырастить кристалл // Занимательная химия - Электронный ресурс: